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Valence bond theory is formulated in terms of second quantized operators and is related 
to the theory of the unitary group of spin-free orbital transformations. The construction of Weyl 
basis states, the evaluation of matrix elements, and the application to a linked-diagram valence 
bond perturbation theory are all discussed. 
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1. Introduction 

To compute with high accuracy the energies and other properties of 
molecules with light nuclei a spin-free Hamiltonian is diagonalized in a large, 
suitably chosen vector space. This formulation can be tedious and difficult 
and lack a simple physical interpretation. Both the Hartree-Fock and the 
valence bond (VB) theories simplify molecular calculations by particular 
truncations of the vector space and at the same time they supply simple 
physical interpretations: the orbital concept in the first case and the classical 
chemical bond structure concept in the second. 

Second quantization techniques have been extensively applied with much 
success to Hartree-Fock and molecular orbital based theories. However, 
general valence bond treatments do not seem to have previously been so 
formulated, although such a formulation has been proposed [1]. This paper 
carries out such a development, in the course of which we exploit the well- 
known connection [2] between second quantized problems and the unitary 
group. Particularly we demonstrate how the computat ion of matrix elements 
in this formulation becomes a simple problem in the theory of the unitary group 
of (spin-free) orbital transformations. We thus find an alternative to the 
classical Rumer basis [3], and also to the diagrammatic Pauling number  
method [4] or to L6wdin's determinantal method [5] for evaluating matrix 
elements. 
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** Supported by ,,Bundesministerium ffir Forschung und Technologic", Bonn-Bad Godesberg, 
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In Section 2 we review the relevant relations between the unitary group 
and second quantized operators. In Section 3 we present the second quantized 
Weyl basis [6, 7] for the unitary group, and show that it leads to a new 
formulation of the usual space-spin [3, 4] and spin-free [8] VB theories. In 
Section 4 the evaluation of the matrix elements is described for the orthogonal 
case. Using a second-quantized theory [-9] of nonorthogonal orbitals, we 
obtain similar results for this more general case in Section 5. Finally in 
Section 6 we indicate how the techniques of Sections 4 and 5 are applicable to a 
linked-diagram perturbation theory [10] based on the valence-bond states as 
zero-order. 

2. Second Quantization and the Unitary Group 

In the second quantized formulation we employ Fermion creation and 
annihilation operators, a,,~+ and a,,~, 

{am~, a ~ }  = 0 + {am~, a,~} = + {a,,~, a,~} = 6m, C~ (2.1) 

where m, n label spin-free orbitals and o-, z = e,/~ label spins. As is well-known 
the Schroedinger Hamiltonian, involving 1- and 2-electron operators ~ and v, 
may be represented as 

a,~a,~ (2.2) 

+ �89 Era,,,,, Z,,,,,, <m~|174 a+,a,+a,,,,a,,,,. 

Defining [2] 

C ' -  + (2.3) ma ~ amaan, 

we note that [as follows from the anticommutation relations of (2.1)], 

[Cn~, "'~' ,,e - "~ (2.4) cm,~,]=a.~,a~,c,~-a,,ma~,~cn%, (cn~)+-c,~. 

These commutation relations are known to identify the C~"~ as generators of the 
Lie algebra of the unitary group U(2Q), where Q is the number of spin-free 
orbitals. The Hamiltonian (2.2) may be seen to be expressable entirely as an 
element of this Lie algebra of U(2O), 

H = ~,,~ Z,~ (rnal*gln~) C,~ (2.5) 

(Cmcr Cn, --~nm'a~cr'Cma). +�89 ~,,~m'~" Z,~,'~' {m~|174 m'~" ,'." ,'*' 

We assume that the interactions are spin-independent, 

{mcrl~Jn~}=a~{ml~ln } {mcT|174 = 6~,6,~,{m|174 
(2.6) 

In this case we may recast [2] the problem in a form supressing the spin 
labels. We define 

(&an ~ Z,r cnaa C~ ~ Zm cn~ " (2.7) 
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These new operators obey the commutation rules 

co,]  - a,~, [ % ,  c ; ]  = 0 

(2.8) 

Hence the C~ are the generators for the Lie algebra of the unitary group 
~//(0) acting on the space of spin-free orbitals. The C; are generators of the 
familiar unitary group U(2) for the total electron spin. Further the elements of 
ag(0 ) and U(2) commute so that they may be represented as acting on 
separate spaces. Since H is spin4ree, we obtain 

H = ~m, <mlaln> r (2.9) 
1 + ~ , , , Z , , ' , "  <m| ~' "' "' ( %  % - a . m , % )  �9 

Hence H is an element of the Lie algebra of ~(0), and will be diagonalized 
within the irreducible spaces for ~(0). The eigenkets to H will be homogeneous 
polynomials in the creation operators acting on the vacuum. The degree of 
these polynomials is given by the number N of electrons. In addition we see 
that these polynomials form a basis for the <IN, 0 . . . . .  0) irreducible re- 
presentation of U(20). Since every element of U(2) commutes with H, we also 
see that these eigenkets are symmetry adapted to U(2) and also ~(0). Thus 
we sequence-adapt to the chain 

U(20) D a#(0) | U(2). (2.10) 

Since the irreducible representations of U(2) correspond to (1- or) 2-rowed 
Young diagrams, those of o//(Q) must correspond to the conjugate (1- or) 
2-columned Young diagrams. 

3. The Weyl or VB Basis 

Many treatments of the unitary group employ the orthonormal Celfand 
states r21 as a basis for the irreducible representations. Here, however, we 
shall use the nonorthogonal Weyl states [6] because of their correspondence 
to valence bond states and the consequent physical interpretation. The set 
of states we are interested in is obtained by acting on the vacuum ket with 
polynomials of creation operators constructed as follows: 

1. Draw the spin-free Young pattern corresponding to the irreducible 
representation of interest. 

2. Fill the diagram with one creation operator in each box such that the 
spin indices a = ~ and fi are in the first and second columns, respectively. 

3. Write the product of these creation operators symmetrized with respect 
to the orbital indices that occur in each row. 
The generalized Young tableaux obtained in this way are called [7] index 
diagrams. We may formally indicate the implementation of these rules if we 
let il, ..., iN_ p and jl  . . . . .  jp be the spinfree orbital labels proceeding down the 
first and second columns of the index diagram. Then letting /~ denote the row 
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symmetrizer of the diagram, the state constructed via the above rules is 

I{il . . . . .  i n -  p} {Jl . . . . .  jp}) = ( _ 1)~N- 2p),/3. {ai,+... ai+_ ~ }  {a+ha. . .a~a}10)  

Here we have defined 
+ + + + 

A~[~, ..A~[~j, " a. + + = ,~ . . . a6 r  �9 l p  + �9 

(3.1) 

The ket of (3.1) is then the Weyl state associated with the indicated index 
diagram. 

Since the symmetrization of orbital indices is equivalent to antisymmetriza- 
tion of spin indices, we have 

A ~ f =  + + + + (3.3) ai~ a j #  - -  a i #  a j~  . 

Therefore each A gives a spin of zero, and the pair of orbitals in the same row 
of the index diagram are coupled to spin zero. The remaining N - 2 p  creation 
operators in (3.1), which are not involved in A's, are all of e-spin and hence 
couple to a spin of 

N 
S = ~ - - p .  (3.4) 

This then is the overall spin of the ket in (3.1). The identity with the usual 
VB ansatz  is established by writing (3.1) in the conventional orbital notation 

1{il . . . . .  i s -  p }  { J l  . . . . .  jp}) = ( -- 1) (N- 2~)PdP {qh,(1)cffl)... (p,~_ p(N - p)~(N - p)} 

�9 { % ~ ( N - p +  1 ) f l ( U - p +  1)...q)jp(N)fl(N)} 

= d "  q~il(1)(pj,(2)q~i2(3)... (pjp (2p) (3.5) 

" q~i~+ , ( 2 p +  1 ) . . . ~ o , ~ , _ ~ ( N )  

- { e ( 1 ) f l ( 2 )  - f l ( 1 ) e ( 2 ) }  . . .  { ~ ( 2 p  - 1)f l (Zp) 

- f l ( 2 p -  1)a(Zp)} �9 cff2p + 1)... e(N). 

This last form is that typically [3] found. It is also readily seen to be 
equivalent to the spin-free bond function [-8] 

1{il . . . . .  iu-,} {Jl . . . . .  Jp})~NP'~oi~(1)q~j ,(2)qg,2(3) . . .%~(ZP) 

�9 ~oz~ + , ( 2 p  + 1 ) . . .  ~o,N_ p ( N )  

~ N .  {q~i~(1)q~j~(2) + %,(1)q~,~(2)} 

... {~pz,(2p- 1)qgj,(2p) + % , ( 2 p -  1)qh,(2p)} (3.6) 

�9 q~ + ~(2p+ 1)... (pzN_,(N) 

where P and N are symmetric and antisymmetric sums of permutations along 
rows and columns of the spin-free Young tableau associated with the index 
diagram by replacing the orbital labels with the corresponding particle labels. 

(3.2) 
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We proceed in the second-quantized notation to indicate some additional 
conventions. From the identities (which follow from (2.1) and (3.2)) 

A ~ P  A ~  - -  2 A~B A ~ P  
l m ~ l n  - - - 2  Z~ll /Jmn 

lrn~lo~ = - - ~ Z ~ l l  t,,,m~ 

(3.7) 

we see that every state with two equal (spin-free) orbital indices is proportional 
to a state where these two orbital indices stand in the same row. Other trivial 
linear dependencies arise if the pair of orbital labels in a row are interchanged 
or if two rows of equal length are bodily interchanged. Thus presuming an 
ordering for the orbitals we add the following conventions to our earlier 
stated rules for constructing the Weyl (or VB) states: 

4. Doubly-occupied orbitals occur in the same row of the index diagram; 
further these rows are located at the top of the diagram in decreasing order 
from top to bottom. 

5. Singly-occupied but paired orbitals are inserted in the remaining rows of 
length two in the index diagram such that they decrease on proceeding from 
left to right and, at least in the first column, from top to bottom. 

6. Singly-occupied and unpaired orbitals are inserted in the tail of the index 
diagram with their order decreasing from top to bottom. 

We shall henceforth denote these Weyl states, satisfying conditions 1 to 6 by 
[~J> with J labelling the particular index diagram from which it is constructed. 

Although the conditions 1-6 yield a set of Weyl states in which no two are 
simply proportional, linear dependence still occurs. There are several different 
manners by which a basis may be chosen from this overcomplete set. One such 
choice is obtained on replacing conditions 5 and 6 above by the stricter 
condition: 

5-6: All singly-occupied orbitals are inserted in the Young pattern such that 
they decrease on proceeding from left to right along rows and from top to 
bot tom down columns. That  conditions 1, 2, 3, 4, and 5-6 designate a basis 
for the irreducible representation defined by the Young pattern involved, may 
be seen as follows: the doubly-occupied orbitals in the first rows necessarily 
couple as singlets to the remaining portion of the diagram in only a single way; 
hence this doubly occupied portion of the diagrams may be neglected in further 
symmetry considerations, whence it is seen that standard index diagrams 
remain; but these diagrams are known [7] as a tool to construct a Weyl basis 
for irreducible tensors, and [6] this method then directly extends to the 
construction of the present basis functions via creation operators. 

An alternative manner by which to choose a basis from this overcomplete 
set is the generalized Ruiner method [3], wherein singly-occupied orbitals 
located on the boundary of a circle are bonded in pairs to one another or to 
a pole also on the circle boundary such that no bonds cross. Obviously these 
Rumer diagrams yield index diagrams satisfying conditions 1 through 6, and 
hence another Weyl basis may be constructed on applying the corresponding 
polynomials to the vacuum ket. 
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4. Evaluat ion  o f  M a t r i x  E lements  

A particular advantage to using such second-quantized Weyl states is found 
in the rather simple approach to evaluating matrix elements. The application 
of a generator cg~' of ~g(~) to a Weyl state is discussed in Ref. 1. We easily see that 

E%,  A..,] = + a.,~,A.~. 

m' + + 
[Cgm , a j  = 6m,,a,,= (4.1) 

~ '1o> =o .  

In using these relations we simply apply cg~' to a Weyl state and move cg,~' to 
the right through the polynomial of creation operators; terms without ~g~' 
may arise from commutators during this process and the final term in which 
~ '  is brought all the way through the polynomial to be applied to the 
vacuum ket gives zero. Any other term arising from the commutators in (4.1) 
is first to be simplified using (3.7) to obtain a state satisfying conditions 1 to 6 
except possibly for the order of the factors in the resulting creation operator 
polynomial. Finally full satisfaction of conditions 1 to 6 is obtained along 
with a phase of + 1 simply by reordering factors. 

As an example we consider the application of cg~' to the Weyl state 

(4.2) 

Thus 

~11 + + = +Aaaac~ad~]O ) 

1 ~fl + + 
= --~Addac=aa=lO ) . 

(4.3) 

We see that A~ and a~ have merely been replaced by _!A,r and + 2 ~ d d  aa~, 
respectively, and we denote this replacement 

A • , • +  ~ _aA~P,,+ (4.4', 
ab ~ d ~  - -  - -  2 ~ d d  ~aEx " 

Finally by reordering the creation operators corresponding to the unpaired 
electrons we obtain a Weyl state satisfying conditions 1, 2, 3, 4, and 5-6, 

(4.5) 
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Table 1. Replacements appearing on applying cg,~' to a Weyl state 

unoccupied singly singly doubly 
occupied occupied occupied 
paired unpaired 

unoccupied 0 A~,~,,, ~ A ~ ,  a,,,, ~ a,.~ + A ~am,,., 
2A~g,, 

singly 0 A~,, A~]~ 
occupied !A~ A~ A ~'p a + A,~ A~,,, - -  2 ~ n n '  ~ m m  --ran ~'m'a 

paired or --+ 

m m - - 2 O m m  an~ ----ram--m'n 

+ c~ + singly A,~,, a,~ A,,,,,, am~ 
+ + _ ~  occupied 0 -~ am~a,,,, 0 

unpaired _ l_ A,~Z~m m a +, - A~%a~,~ 

doubly 0 0 0 0 
occupied 

In Table 1 we indicate the replacements, analogous tO Eqs. (4.3) and (4.4) of the 
example, for all possible cases. Following the replacements of Table 1, the 
phase for the appropriate Weyl state is simply - 1  raised to a power; this 
power is nonzero only for positions (1, 3), (2, 3), (3, 2), and (3, 4) of the table, 
and in these cases the power simply is the number of positions which the 
replaced singly-occupied orbital must be moved to achieve standard ordering 
of the creation operators. (We note no phase arises from reordering the A's 
since they all commute.) We thus obtain 

cg,~' ] kuJ} = ~(m, m', J)l ~ J J ' ( m , m ' , J ) )  (4.6) 

and the matrix element (kuslcg,~'[~us) is evaluated as 7 ( m , m ' , J )  times the 
overlap (kU*lkUS' }. Two-electron matrix elements are similarly obtained as a 
product of two y-coefficients times a single overlap, plus a term of the 
one-electron type. 

5. The Case of Nonorthogonal Orbitals 

If as is often the case the VB (or Weyl) states are to be constructed from 
nonorthogonal orbitals, we need to generalize the method of section 4. The 
nonorthogonal orbitals case is distinguished from the orthogonal orbital case 
via the modified anticommutation relations 

§ 

{am~, an~ } = {am~, a+~} = 0 

{ a + , ,  a ,~}  = 6 ~ ( n l r n  ) (5.1) 

where ( n l m )  is the overlap integral between orbitals n and m. In developing 
the ensuing second-quantized theory we initially follow an earlier treatment [-9]. 
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However, we ultimately differ from this earlier work in dealing with Weyl 
states rather than the Gelfand states, which are equivalent to the usual 
Young-Yamanouchi basis with successively coupled spins. 

We let M denote the orbital overlap matrix with fin, n)th element (rain) .  
Assuming the orbitals are linearly independent, we see that M has an inverse 
M - 1  whose (m,n) th  element we denote by (th[h). The orbital [th) dual to 
[m) then is defined to be 

Ith> - ~, ln> <filth>. (5.2) 

Clearly the elements of M-1 are the overlaps of these dual orbitals, and 

[rn> = ~,[t~> (nlm> (h[m>= (n[th> = 6,m. (5.3) 

Associated with the dual orbitals we have dual annihilation operators 

a,,,~ = ~,a,r  [th) (5.4) 

(as well as, dual creation operators, which we however do not explicitly 
require). From (5.1) and (5.4) we have 

{~,.~, - + 
a .~}  = {am~, a.+~} = 0 (5.5) 

{a+~, a .~ }  = ~ , . . ~ r  �9 

The Hamiltonian of Eq. (2.2) may [9] be written as 

u = Z ~ Z . r ( m ~ l ~ l ~ )  a L a . r  
(5.6) 

+ y ~ m c m , , ~ , ~ , ~ , , ~ , ( m ~ r | 1 7 4  + +" amaan~ an,r, am,a, 

where the one- and two-body matrix elements are defined between regular 
bras and dual kets. As the anticommutation relations (5.5) are similar to those of 
Eq. (2.1), the operators 

C " r  + ~ ( 5 . 7 )  m,r = amaam 

have the same commutation relations as the C~,~ evince in (2.4), However, the 
hermitian property no longer holds, as 

(C"2~) + ~ Q T .  (5.8) 

Therefore the group generated by the ~"* C,~, must be considered as GL (2~) 
rather than U(20). Again we could write the Hamiltonian in terms of the 
generators of (5.7), similar to Eq. (2.5), and we may define the contracted 
operators 

~n  - -  ~ncr  

(gin = ~,r162 (5.9) 

C~ = ~ C ~  

Here c~  generates a group f~c~a(0 ) while C~ still generates the U(2) group 
related to total spin because (C;) + = C~. Therefore we write the latter generators 
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without a caret. A spin-independent Hamiltonian may then be written as 

qY., +~. , .~, . , . ,<m| |  > ~"' An' ' . . . .  - (5 .10)  

Now we may deal with Weyl states constructed from nonorthogonal 
orbitals in complete analogy with Sections 3 and 4. The VB states may again 
be constructed as Weyl states using only the + creation operators as described am~ 
in Section 3. In order to evaluate matrix elements we note that for nonorthogonal 
orbitals Eq. (4.1) is replaced by 

[Cgm , a2~] = 6,,,,a,,~ 
 g '10> = 0 .  (5 .11)  

We therefore obtain immediately, similar to (4.6), that 

%~,~' L ~J> - 7(m, m', J) 17tJ'(m'm"S)> (5.12) 

where y(m, m', J) and J'(m, m', J) are obtained exactly as in the orthogonal case. 
The only difference is thus that the overlaps (~TJJ[~ LYjJ') are more complicated 
in this case. They can again be calculated, for instance, by expanding in 
Slater determinants and evaluating [5] the matrix element between two Slater 
determinants as the determinant of the orbital overlap matrix between the 
orbitals of the two Slater determinants. The present method of matrix element 
evaluation clearly avoids first- and second-order adjugate matrix manipulations, 
as found in L6wdin's method [5]. Clearly also the diagrams and island 
untwisting and counting of Pauling's method [4] are avoided too. 

Finally it is of significance to note that matrix elements between a dual 
Weyl state (defined to be constructed from dual orbitals) and an ordinary Weyl 
state is evaluated particularly easily. Equation (5.12) still applies, but we finally 
wish to evaluate overlaps as (~s ITs) ,  where 19 ~r> is a dual Weyl state. If 
these are expanded out in terms of overlaps between dual and ordinary 
Slater determinants, then each of these Slater determinant overlaps is simply 
either _+ 1 or 0, depending on whether or not exactly corresponding dual and 
ordinary orbitals appear in the two Slater determinants. This use of dual 
Weyl states results in a nonhermitian matrix representation of H, but even 
more importantly will only be of interest if all the Weyl states corresponding 
to a given (spin-free) orbital occupation scheme are to be used in the 
calculation. (This last result is seen since a subspace of Weyl states and the 
corresponding dual subspace spanned by the corresponding Weyl states are 
not in general identical.) Such matrix elements between dual and ordinary 
Weyl states arise naturally in the next section. 

6. Perturbation Theory 

The present second-quantized formulation of the electronic interaction 
problem lends itself to the development of a perturbation formalism based 
upon a zero-order VB picture. A zero-order VB wave function is considered 
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to be a linear combination of Weyl states constrained only to involve the 
same spin-free orbitals in each term. Our zero-order VB Hamiltonian thus does 
not mix configurations with different spin-free orbitals, 

H~ = ~,,,(mldlrh) @2 + �89 ~m. { (m| ) (~,.~m An __ '~m,,~,.)%' 
{6.1) 

+ ( ,m|174 % ~'' (,%,% - ~?~)}. 
Here the use of the nonorthogonal  orbitals and their duals generally yields 
a nonhermitian H ~ which however still leads rl  1] to a consistent perturbation 
theory. The perturbation consists of all remaining terms in H. 

We can briefly compare the zero-order VB picture of (6.1) with the usual 
single-determinant zero-order pictures such as arise in SCF or Hartree-Fock 
theories. These more common zero-order pictures constrain the zero-order 
Hamiltonian not to mix terms with different spin-orbitals (in contrast to our 
VB prescription in terms of spin-free orbitals). The single-determinant zero- 
order Hamiltonian is then like that of (6.1) except that part of the (m | n[~[h | rh) 
exchange term of (6.1) is omitted. This occurs since 

An *m A m  + + ~ 

~fm~, - ~m - ~a ,~a~a , ,~a ,~  (6.2) 

and the second term here does not conserve spin-orbitals. In both single 
determinant and VB approaches the spin-free orbitals might be optimized [,12]. 
However, this optimized VB approach then necessarily yields energetic results 
of equal or greater accuracy, since the VB result includes some configuration 
interaction among single determinants. Thus we expect the VB type of zero- 
order Hamiltonian in (6.1) to be more accurate than the corresponding zero- 
order single-determinant Hamiltonian, which deletes part of the (m|174 
term. 

The various terms of the Hamiltonian are conveniently expressed in a 
diagrammatic form. We consider a set of horizontal positions each identified 
with an orbital. Then arrows between these points indicate how a given term 
transfers electrons among the orbitals 

n , m = ( m l h l h > c ~  

1 ,-~..~ ,m=-- ( m | 1 7 4  "" ~z 6.k~m)'t (%fifk -- (6.3) 

= ( k | 1 7 4  *~ A 

If some of the orbitals are identical in (6.3), arrows may loop or two may 
diverge and/or converge on the same point. A squiggly line connecting two 
arrows merely emphasizes they both arise from the same interaction. The 
presence of one or two arrows indicates one- or two-electron interactions. These 
diagrams naturally indicate the possible coordinate-space motions of electrons 
from one localized spin-free orbital to another, and thus they compliment 
the more common Feynman diagrams which most naturally indicate the 
possible momentum-space scatterings of electrons from one delocalized spin- 
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orbital to another. Physically the present diagrammatic representation is more 
natural because of the typical localization of VB-orbitals. 

An unlabelled diagram (i.e., without orbital labels) is defined to be a sum 
over all possible labellings with orbitals for distinct positions in the unlabelled 
diagram remaining distinct. Then the zero-order Hamiltonian and perturbation 
may be written 

/ t  ~ = 0 

V = V(1)+ V (2) (6.4) 

V ( ~ ) -  , + @ ~ + ~ + C ) ~ +  , , 
V(2) = ,,._@r + -~. ++--, + ~ .  

Here the perturbation has been divided into first- and second-order portions 
which yield single and double excitations with regard to changes in spin-free 
orbital occupation number. 

Products of operators may be diagrammatically indicated by stacking the 
composite diagrams up with the usual convention that the higher the vertical 
position of a portion of the diagram the further the corresponding operator is 
to the left in the product, Horizontal bars can also be introduced in diagrams 
to represent zero-order resolvents 

1 1 
G~ - E o _ H  o - 2 ~ , ~  [~o} <@o I (6.5) 

E - E  k 

Here [~o} is the state dual to the zero-order state o I%>, 
0 0 0 0 

H (6 .6)  

and the zero-order level E ~ to be perturbed will be assumed to be nondegenerate, 
although generalizations to degenerate cases are [10] possible. It is important 
to note the simplicity of constructing the dual states I~ ~ invoked in (6.5). 
We have, in correspondence with (5.11), 

, @,,] = + 

[a,,, ~ , ]  = 6,m,a,,~ (6.7) 

=0. 

Thus if we choose I~ ~ to be the ket composed from linear combinations 
of products of dual creation operators applied to the vacuum ket IO} in the 
same manner as I~ ~ is composed from ordinary creation operators applied 
to 10}, then 

~ 0  0 0 n 0  <%{H (6.8) 

Equality is obtained in the last equation using the proper normalization. 
Clearly these I~P ~ are the desired dual states, and are easily constructed 
only from the spin-free orbital overlap matrix (which is significantly simpler 
to deal with than the configuration overlap matrix). 
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Perturbation theory for the nonhermit ian case develops [11] similarly to 
that for the hermitian case, where now one merely uses the dual states in 
bra-positions. The first-, second- and third-order energies are 

E(1)= <q'~ V('I  7 '~ = 0 
E(2)= < q'~ V(i)~ 0 V (1) -~ W(2)} f (/~0 > ~--- < 9~ v(1)~ ~ v(1)l 7'~ (6.9) 

E(3) -- < ~o I { W ( 1 ) ~ o ( v ( 1 )  _ EO))~o VO) + V(1)~o V ( 2 ) §  V ( 2 ) ~ o  V(1)} 17"o> ~- 0 .  

We note that since each additional perturbat ion order is associated with a 
change of one spin-free orbital occupation number  by one, all odd-order 
perturbation energies are, in fact, zero. 

The various terms in the second-order perturbation energy of (6.9) are 
depicted in a diagramatic form in Fig. 1. Clearly to obtain a nonzero 
contribution any occupation number  changes obtained in applying the V (') 
to the right of ~ o  to the ket must be balanced by the same occupation 
number  changes arising from the second V (1) to the left of ~o. Hence we 
require (in any order) the same number  of arrows coming into an orbital 
position as leave it. To evaluate the perturbat ion energies the various diagram 
expectation values are expanded, as, for instance, 

<~~ ";r 17"~ 

0 Am <~~176 <%1% 17"~ (6.10) �9 E~"~" EO _ Eo 

' I I I , i i !~ '4 I ~ 't ' ]4 I 

I I i 
I 1 I I t b 

( ~ ' ~ ' "  1 1 = 1 = I 
I 1 I 

, 4  I = I i 
T , _1 

Fig. 1. Diagrams contributing to the second-order energy. If the diagrams above the diagonal are 
flipped upside-down all the remaining unlisted second-order diagrams are obtained 
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where the k-sum over excited z e r o - o r d e r  states extends only over those 
states involving a single excitation from orbital m to n. The matrix elements 

0 Am 0 (~k[~,~,[~I'k ,) may be evaluated using the t ransformat ion properties of the 
~ ,  as described in Section 5. 

7. Conclusion 

We have thus indicated a second quantized formulat ion of  valence bond  
theory. The relation of the formulat ion to the theory of the unitary g roup  
is exploited in evaluating matrix elements. Indeed this utility of the unitary 
group along with the Weyl (or VB) basis is not  surprising, part icularly in view 
of previous uses of the uni tary group in evaluating matrix elements on the 
Gelfand basis, not  only in nuclear physics [2] but recently also [-13] in 
quan tum chemistry. It is no tewor thy  that  in many  applications the Weyl 
basis yields simpler matrix element formulas and also is expected to be more  
directly physically interpretable in terms of  chemical bond  concepts. The 
resulting manipulat ive techniques can then be expected to enable development  
and applicat ion of new approximat ions  for either semiempirical or ab initio 
computat ions.  Even in the general case of  nonor thogona l  orbitals the current 
techniques are found to be applicable. Fur ther  l inked-diagram per turbat ion 
theories were found to apply, in a manner  reminescent of  the more  familiar 
M O  approaches.  

Finally the authors would like to acknowledge helpful discussions with Prof. Marcos Moshinsky. 
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